分享
《无穷的奥秘》
部分与整体的可能是相等的!
张续杰    来源社团:山东大学科普协会
得票 369 阅读 1496 评论 1

在无穷的发展史上,部分与整体的关系是人们十分纠结的。在历史上承认实无穷同承认“部分小于整体”不可兼得。但是对于无穷大,也许有一个理论会让你感到大吃一惊——部分与整体可能是相等的!这里你可能就要反驳我了,这个完全就是不可能的嘛!古代的数学家们也是这样认为的。拿宇宙作为一个例子的话,我们知道宇宙现在仍然在无限增大,那我们也许就能认为宇宙是无限大,那我总不能说宇宙的一半和整个宇宙一样大吧?这里你又犯了一个错误,将无穷大变得实物化,那必然会出错的,宇宙并不能看成无限大,它是有一定的大小的,即使仍然在不断扩大。

我们先举一个比较简单的例子——奇数的个数等于偶数的个数,偶数的个数等于整数的个数!

这时你也许又会反驳,刚才不是证明了奇数的数量一定是和偶数相等的吗?我们都知道奇数和偶数加起来便是整数,那很显然奇数与偶数各自的数量是整数的一半。那怎么可能会有这样的关系呢?

我们不应该只想到奇数与偶数的一一对应关系,因为还会有另外的一种对应关系,当我们将所有的整数乘2时,我们发现得到的居然全部是偶数,而将这些偶数又减1后,得到的全部是奇数。

这样你就惊奇的发现:偶数的个数等于奇数的个数,还等于整数的个数!部分与整体居然是相等的!

另外还有一个不可思议的例子:无论长短,线段上的点的数目永远是相等的。这就有点烧脑了,因为我们知道线段上的点我们看不到,数不清,很难通过一般的思维找到对应关系,但办法总是有的:

Image title

假设有两条不一样长的线段AC和AB,始终会有直线平行于BC交AB与AC于两个点,这两个点便具有一一对应的关系,也就是说长度不同的线段AB与AC上具有相同数量的整数点。

我们甚至可以证明更加神奇的观点:直线上的几何点数与平面上的几何点数相同。这也是整体与部分的关系。我们先比较一条长1厘米的线段上几何点的个数与面积为1平方厘米的正方形点的个数。首先假设一个点与线段一个端点的距离为0.456988厘米,那么我们将奇数位和偶数位的数字提取出来形成两个数,分别为0.468和0.598,以正方形的一个端点为原点建立直角坐标系,正方形在第一象限内,那么坐标为(0.468,0.598)的点就在正方形内,这时线段上的几何点就与正方形上的几何点建立了以一对应关系,线段上的几何点的个数便与正方形上点的个数相等了,那么直线与平面上的点的个数就相等了。

同理,一个正方形上的点与一个立方体上的几何点的个数也是相同的,只不过这次就比较麻烦了,因为要先证明正方体内的几何点的数目和线段上的几何点数目相等。我们还是假设存在一条1厘米的线段和1立方厘米的正方体,假设一个点离线段的一个端点距离为0.456789123厘米,那么我们将小数点后的数字分成三份,如第1、4、7位为一组,第2、5、8位为一组,第3、6、9位为一组,则可得到三个数字:0.471、0.582、0.693,那么以正方体的一个顶点为原点建立立体直角坐标系,正方体在第一象限,那么就有点(0.471,0.582,0.693)在正方体内,这样线段上的点就与立方体内的点建立了一一对应关系,那么线段上的几何点就与立方体内的几何点数量就相等了,因为正方形的几何点与线段上的几何点数目相等,那么正方形内的几何点与立方体内的几何点数量相等。

我们再说一个例子,我们说一个圆拥有无数条半径,那么当我们将圆沿着一条直径分开之后,这两个半圆仍然拥有无数条半径,那么我们也就可以说,这两个半圆的半径的数目与原来的整圆的半径数目是一样的,那么部分等于全体的结论也就得以证明了。

同时我们还可以举一反三,那么我说一个正方形内有无数个几何点,当我将正方形一分为二时,所分成的两个长方形内部的几何点的数目也就与原来的正方形相等,部分等于整体也就得以证明。

那我们可以幻想下,当我们生产一件商品的时候,当我们计划并真正生产无穷大个时,我们就可以说我们已经完成了计划,我们还可以说我们已经超额完成计划,超额多少倍都可以!当然这只是玩笑话了!

看到这里是不是有点懵了呢?也许这就是科学的魅力吧,当你沉迷于平时的生活经验或者是习惯思维时,科学总是突然给你一个激灵,居然还有这样的存在!因为科学就在于观察与思考。



-完-
我要评论
理性边界 2018-01-25 20:57
关于数学的科普很难,尤其是关于这个非常深奥的无穷大问题,如果能创作出一些类比的图片那就最好了!
科普作品
无穷的奥秘
| 目录  (共9章)
评委点评 评语汇总

非常有深度的科普文章。揭秘了数学上关于“无穷”的很多奥秘。文章的前半部分读起来有趣而易懂,后半部分专业性变强,阅读起来也变得不如前半部分容易理解,后期乏力。作者在这部分还需要努力。

2018-01-25 16:12 匿名 ——

本文最大的优点是深入浅出、通俗易懂、简明扼要地讲明什么是无穷大、无穷大的级别、正无穷大、负无穷大、无穷小等概念,且所用的篇幅都不长,适合读者碎片化阅读。“无穷大的历史”作者下了很大的功夫,但更像是学术论文中的文献综述,对古代近代中外哲学家、数学家及其相关观点未进行精选,主线不够明晰,可读性差。建议改写这部分内容并放在最后,不要放在现在的位置。文内也有一些错别字,例如:把“高斯”写成“高四”,希望在修改时一并改过来。

2018-01-28 14:12 匿名 ——

请用微信扫描下方二维码 ×
打开微信,点击底部的“发现”,
使用“扫一扫”即可将网页分享至朋友圈。

点赞拉票需在微信中进行!

请用微信扫描下方二维码

欢迎登录

记住我忘记密码戳这里

登 录

没有账号点此注册